Equilibrium Worksheet #4 From the Internet October, 2003 (Revised 2011)

1. Suppose 1.000 mole CO and 3.000 moles H₂ are put into a 10.00 L vessel at 1200 Kelvin. If the equilibrium constant for the reaction shown below is 3.92, calculate the final composition of the mixture at equilibrium.

the value of K is 0.771 at 750°C. If 0.0100 mole of $H_{2(g)}$ and 0.0100 mole of $CO_{2(g)}$ are mixed inside a 2.00 L vessel at 750°C, what are the concentrations of all substances at equilibrium?

 $H_{2(g)} + CO_{2(g)} \leftrightarrows H_2O_{(g)} + CO_{(g)}$

3. Nitrogen monoxide is formed in automobile exhaust by the reaction of the N₂ and O₂ in the air. At 2127°C, K=0.0125. Initially, a mixture contains 0.850 moles of N₂ and 0.850 moles of O₂ in a 15.0-Liter vessel. Calculate the concentration of all species when equilibrium is established at 2127°C.

$$N_{2}(g)$$
 + $O_{2}(g)$ \Rightarrow $2 \text{ NO}(g)$ $K = .0/25$
.0567 M .0567 M

4. The equilibrium constant K is 115 at 60°C for the reaction shown below. A 1.500 L flask contains 3.000 mole of each substance.

A. Is the system at equilibrium? (Show work here)

A. Is the system at equinorium? (Show work here)
$$Q = \frac{L^2 l^2}{L^2 l^2} = 0 \qquad K > Q \qquad \text{System} \quad Not \quad @ \quad \text{equilibrium}$$

- B. If not, in which direction will the equilibrium shift? To the right
- C. What are the equilibrium concentrations for each substance?

$$K = 1/5 = \frac{[2+2x]^2}{[2-x][2-x]}$$

$$[F_2] = 2 - 1.528 = .472 \text{ M}$$

$$[F_2] = 0.472 \text{ M}$$

$$[F_2] = 0.472 \text{ M}$$

$$[H_3] = 5.056 \text{ M}$$

$$[H_4] = 2 - 1.528 = .472 \text{ M}$$

$$[H_5] = 2 - 1.528 = .472 \text{ M}$$

$$[H_7] = 2 + (2x)(1.528) = 5.056 \text{ M}$$

5. The value of K for the HI equilibrium at 425°C is 54.8.

$$H_{2(g)} + I_{2(g)} \leftrightarrows 2HI_{(g)}$$

A quantity of HI (g) is placed in a 1.00 L container and allowed to come to equilibrium at 425°C. At equilibrium, the concentration of HI (g) is found to be 0.50 M.

- (a) What are the concentrations of $H_{2(g)}$ and $I_{2(g)}$ at equilibrium?
- (b) What was the initial concentration of HI (g)?

6. Consider the system $A_{(g)} + B_{(g)} \stackrel{\leftarrow}{\Rightarrow} AB_{(g)}$ at equilibrium where $K_c = 500$.

At equilibrium, the concentrations of A, B, and AB are found to be 0.0300 M, 0.0100 M, and 0.150 M, respectively, in a 5.00 L container. An additional 0.0400 moles of B are added. What are the final

equilibrium concentrations of A, B, and AB?

$$A_{(g)} + B_{(g)} = AB_{(g)}$$
 $O300M O18M O18M$
 $O300M O18M$
 $O300M$
 $O300M$

$$K = 500 = \frac{[.150 + x]}{[.0300 - .00538 = .0246 \text{ M}}$$

$$[.0300 - x][.018 - x]$$

$$[B] = .018 - .00538 = .0126 \text{ M}$$

$$[X = .00538]$$

$$[AB] = .150 + .00538 = .1554 \text{ M}$$

7. A 2.50-mole quantity of NOCl was initially in a 1.50-L reaction chamber at 400°C where the following chemical reaction occurred.

$$2NOCl(g) \implies 2NO(g) + Cl_2(g)$$

After equilibrium was established, it was found that 28.0% of the NOCl had decomposed. Calculate the equilibrium constant K_c for this reaction.

Since 28.0% of NOCI has Lecomposed, then we calculate the molarity change for NOCI is .468 M. This number represents 2x in the RICE chart. 2x = .468 (x = .234)

$$K = \frac{[2x][x]}{[1.67-2x]^2} = \frac{[(2)(.234)][.234]}{[1.67-2(.234)]^2} = \frac{.0513}{1.44} = \frac{.0356}{}$$