Ksp Problems Worksheet #3 (2011)

Threshold Saturation Ion Concentration before ppt formation begins

1. What is the maximum concentration of strontium ion (Sr²⁺) that can be present in a 0.012 M K₂CO₃ solution without observing a precipitate of SrCO₃?

$$SrCO_3 \stackrel{?}{=} Sr^{2+} + CO_3^{2-}$$

$$Ksp = 9.3 \times 10^{-10} = [Sr^{2+}][CO_3^{2-}]$$

$$9.3 \times 10^{-10} = [Sr^{2+}][.012]$$

[Sr2+] = 7.8 × 10⁻⁸ M for a satid solution. Anything higher will cause a pet to form.

2. What is the maximum concentration of chloride ion (Cl¹-) that can be present in a 0.10 M AgNO₃ solution without observing a precipitate of AgCl?

Aga =
$$Ag^{\dagger} + CI^{-}$$

 $k_{SP} = 1.8 \times 10^{-10} = [Ag^{\dagger}][CI^{-}]$
 $1.8 \times 10^{-10} = [.10][CI^{-}]$

[CI-]= 1.8 × 10-9 M for

a sat'd solution. Anything

higher will cause a ppt

g AgCl 6 form

3. Solid AgNO₃ is added to a solution containing 0.0003 M KCl and 0.02 M NaBr.

(a) What molarity of dissolved Ag¹⁺ is required to start the precipitation of the AgBr?

$$Ksp = [Ag^{+}][Br^{-}] = 5.0 \times 10^{-13}$$

$$[Ag^{+}][.02] = 5.0 \times 10^{-13}$$

$$[Ag^{+}] = 2.5 \times 10^{-11} \text{ M}$$

(b) What molarity of dissolved Ag1+ is required to start the precipitation of the AgCl?

$$K_{SP} = [A_g^{\dagger}][C_1^{-}] = 1.8 \times 10^{-10}$$

$$[A_g^{\dagger}][.0003] = 1.8 \times 10^{-10}$$

$$[A_g^{\dagger}] = 6.0 \times 10^{-7} M$$

(c) Which compound, AgBr or AgCl, will precipitate first upon slow addition of AgNO₃? Explain your reasoning.

Ag Br will ppt first because it ppts when [Ag+] > 2.5 × 10 "M

The AgCI will start to ppt after [Ag+] > 6.0 × 10 - 7 M

4. If solid NaCl is added slowly to a beaker containing 0.120 M AgNO₃ and 0.150 M Pb(NO₃)₂, which will precipitate first, AgCl(s) or PbCl₂(s)? Show calculations to support your answer.

$$Ksp = [Ag^{+}][CI^{-}] = 1.8 \times 10^{-10}$$

$$[.120][CI^{-}] = 1.8 \times 10^{-10}$$

$$[CI^{-}] = 1.5 \times 10^{-9} M$$

PbCl₂
$$Ksp = [Pb^{2+}][CI]^{2} = 1.7 \times 10^{-5}$$

 $[.150][CI]^{2} = 1.7 \times 10^{-5}$
 $[CI]^{2} = 1.1 \times 10^{-4}$
 $[CI]^{2} = .011 \text{ M}$

The Agal will start to ppt when [Cl-]>1.5 × 10-9 M which would come much before [Cl-] > .01/M that would be needed for PBC/2 to PPt.

- 5. An aqueous solution of Ca(NO₃)₂ is added slowly to 1.0 Liter of a well-stirred solution containing 0.020 mole F¹ and 0.10 mole SO₄² at 25°C. (You may assume that the added Ca(NO₃)₂ solution does not affect the total volume of the system.)
 - (a) Which salt precipitates first? Explain your reasoning.

CaF₂

$$K_{5}P = [Ca^{2+}][F^{-}]^{2} = 3.9 \times 10^{-11}$$

$$[Ca^{2+}][\frac{.020}{1.0}]^{2} = 3.9 \times 10^{-11}$$

$$[Ca^{2+}] > 9.8 \times 10^{-8} M$$
when CaF₂ starts to ppt

Ca SOy

$$Ksp = [C_{\bullet}^{2+}](soy^{2-}] = 2.4 \times 10^{-5}$$
 $[C_{\bullet}^{2+}][\frac{.10}{1.0}] = 2.4 \times 10^{-5}$
 $[C_{\bullet}^{2+}] \times 2.4 \times 10^{-4}M$

When CaSoy starts

to ppt

(b) What is the concentration of Ca2+ in the solution when the first precipitate begins to form?

I would expect the CaFz to ppt first because CaFz will ppt once the [Ca2+] exceeds 9.8 ×10⁻⁸ M whereas the CaSOy will only ppt once [Ca2+] exceeds 2.4 ×10⁻⁴ M.