Ksp Problems Worksheet #4

Review over all types of Ksp Problems

1. Write the equilibrium expression for the solubility product constant (Ksp) for AgBr.

2. What is the molar solubility (maximum molarity) of Ag⁺ in a saturated solution of AgBr?

AgBr
$$\rightleftharpoons$$
 Ag+ + Br
+× +×
× = 7.1 × 10⁻¹³ = [Ag+][Br-]
(X=7.1 × 10⁻¹³ = [x][X]

3. What is the molar solubility of AgBr in a 0.015 M KBr solution?

AgBr
$$\Rightarrow$$
 Agt + Br $= 5.0 \times 10^{-13} = [\times][.015 + \times]$
 $+ \times + \times$ $= 0.015 + \times$

4. Would a precipitate be observed if the following were mixed?

100.0 mL of 0.00015 M AgNO₃ and 20.0 mL of 0.00050 M NaBr

$$[A_9^+] = \frac{(00015)(.1000)}{.120} = 1.25 \times 10^{-4} \text{ M} \qquad Q = [1.25 \times 10^{-4}][8.33 \times 10^{-5}]$$

$$Q = 1.0 \times 10^{-8}$$

$$[Br^-] = \frac{(.00050)(.0200)}{.120} = 8.33 \times 10^{-5} \text{ M}$$

$$\text{will form}$$

5. A person adds solid AgNO₃ crystals into a large beaker containing a mixture of 0.0022 M KCl and 0.00011M KBr until a precipitate begins to form. Was the observed precipitate AgCl or AgBr?

AgBr will ppt first because the molarity of Agt will increase from zero to 4.5 x 10 9 M before it reacles the required 8.2 x 10 8 M to observe the ppt of AgCI

6. What is the molar solubility of CaSO₄ in pure water at 25°C? CaSO₄
$$\stackrel{?}{=}$$
 CaSO₄ $\stackrel{?}{=}$ CaSO₄

7. What is the molar solubility of CaF₂ in pure water at 25°C?

What is the molar solubility of CaF₂ in pure water at 25°C?

$$K_{SP} = 3.9 \times 10^{-11} = \left[Ca^{2+} \right] \left[F^{-} \right]^{2}$$

$$3.9 \times 10^{-11} = \left[\times \right] \left[2 \times \right]^{2}$$

$$3.9 \times 10^{-11} = 4 \times^{3}$$

$$\times = 2.1 \times 10^{-4} \text{ M} = \text{max molarity of CaF}_{2}$$

- 8. At 10°C, 8.9 × 10⁻⁵ g of AgCl(s) will dissolve in 100. mL of water. Cannot use our pink sheet since its values are based on a temperature of 25°C.
 - Write the equation for the dissociation of AgCl(s) in water.

$$AgCI \Longrightarrow Ag^{+} + CI^{-}$$

(ii) Calculate the maximum molarity of AgCl(s) in water at 10°C.

moles AgCI that disrolves in 100. IL of H20

$$\frac{8.9 \times 10^{-5}}{143.5} = 6.2 \times 10^{-7} \text{ moles AgCI}$$

$$\boxed{\text{AgCI}} = \frac{6.2 \times 10^{-7}}{.100 \text{ Liters}} = \frac{6.2 \times 10^{-7}}{.100 \text{ Liters}}$$

(iii) Calculate the value of the solubility-product constant, K_{sp} for AgCl(s) at 10°C.

$$K_{cp} = [6.2 \times 10^{-6}][6.2 \times 10^{-6}]$$
 $K_{cp} = 3.8 \times 10^{-11}$

- 9. Answer the following questions that relate to the solubility of salts of lead and barium.
 - (a) A saturated solution is prepared by adding excess $PbI_{2}(s)$ to distilled water to form 1.0 L of solution at 25°C. The concentration of Pb²⁺(aq) in the saturated solution is 0.0013 M. The chemical equation for the dissolution of PbI₂(s) in water is shown below.

$$PbI_{2(s)} \iff Pb^{2+}(aq) + 2\Gamma(aq)$$

Write the equilibrium-constant expression for the equation. (i)

$$K_{SP} = \left[Pb^{2+}\right]\left[I^{-}\right]^{2}$$

Calculate the molar concentration of $\Gamma(aq)$ in the solution.

(iii) Calculate the value of the equilibrium constant, K_{sp} .

$$K_{SP} = [Pb^{2t}][I^{-}]^{2}$$
 $K_{SP} = [.0013][.0026]^{2}$
 $K_{SP} = 8.8 \times 10^{-9}$

(b) A saturated solution is prepared by adding PbI₂(s) to distilled water to form 2.0 L of solution at 25°C. What are the molar concentrations of $Pb^{2+}(aq)$ and $\Gamma(aq)$ in the solution? Justify your answer.

Saturated solution of Pb Iz has a molarity of 0.0013M (as stated @ top of page). Regardless of the volume of the solution, the molarities will be [Pb2+]=,0013M [I-] = .0026 M

(c) Solid NaI is added to a saturated solution of PbI2 at 25°C. Assuming that the volume of the solution does not change, does the molar concentration of Pb2+(aq) in the solution increase, decrease, or remain the same? Justify your answer.

Solid NaI is a delightful source of I. The adding of I to a saturated solution of PbIz would cause the equilibrium to shift to the left, reducing the concentration the equilibrium to shift to the left, continues on Next Page -> Pb2+. (Le Chat Principle)

- (d) When a 500. mL sample of $8.2 \times 10^{-6} M \, \text{Ba(NO}_3)_2$ is added to 500. mL of $8.2 \times 10^{-6} M \, \text{Na}_2 \, \text{CrO}_4$, no precipitate is observed. The value of K_{sp} for the salt BaCrO₄ is 1.2×10^{-10} .
 - (i) Calculate the molar concentrations of Ba²⁺(aq) and CrO₄²⁻(aq) in the combined 1.00 L of solution.

$$[Cr04^{2}] = \frac{(8.2 \times 10^{-6})(.500)}{1.00} = \frac{(4.1 \times 10^{-6})}{1.00}$$

(ii) Use the molar concentrations of Ba²⁺(aq) ions and CrO₄²⁻(aq) ions as determined above to show why a precipitate does not form. You must include a calculation as part of your answer.

$$Q = [Ba^{2+}][croy^{2-}]$$

$$Q = [4.1 \times 10^{-6}][4.1 \times 10^{-6}]$$

$$Q = 1.7 \times 10^{-11}$$

Ksp for Ba Croy (listed above) is 1.2 × 10-10

Because Q < Ksp will not see a ppt