\qquad
AP Chemistry \qquad

Equilibrium Worksheet \#5

From the Internet October, 2003 (Revised 2010)

1. Suppose 1.000 mole CO and 3.000 moles H_{2} are put into a 10.00 L vessel at 1200 Kelvin. If the equilibrium constant for the reaction shown below is 3.92 , calculate the final composition of the mixture at equilibrium.
$\mathrm{CO}_{(\mathrm{g})}+\mathbf{3 H}_{\mathbf{2}(\mathrm{g})}^{\leftrightarrows} \quad \mathrm{CH}_{4(\mathrm{~g})}+\mathbf{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2. For the reaction represented by the equation:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \leftrightarrows \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}
$$

the value of K is 0.771 at $750^{\circ} \mathrm{C}$. If 0.0100 mole of $\mathrm{H}_{2(\mathrm{~g})}$ and 0.0100 mole of $\mathrm{CO}_{2(\mathrm{~g})}$ are mixed inside a 2.00 L vessel at $750^{\circ} \mathrm{C}$, what are the concentrations of all substances at equilibrium?

$$
\begin{aligned}
& \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})} \leftrightarrows \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+\quad \mathbf{C O}(\mathrm{g}) \\
& {\left[\mathrm{H}_{2}\right]=0.00266 \mathrm{M}} \\
& {\left[\mathrm{CO}_{2}\right]=0.00266 \mathrm{M}} \\
& {\left[\mathrm{H}_{2} \mathrm{O}\right]=0.00234 \mathrm{M}} \\
& {[\mathrm{CO}]=0.00234 \mathrm{M}}
\end{aligned}
$$

3. Nitrogen monoxide is formed in automobile exhaust by the reaction of the N_{2} and O_{2} in the air. At $2127^{\circ} \mathrm{C}, \mathrm{K}=0.0125$. Initially, a mixture contains 0.850 moles of N_{2} and 0.850 moles of O_{2} in a 15.0Liter vessel. Calculate the concentration of all species when equilibrium is established at $2127^{\circ} \mathrm{C}$.
$\mathrm{N}_{2}(\mathrm{~g}) \quad+\quad \mathrm{O}_{2}(\mathrm{~g}) \quad \leftrightarrows \quad 2 \mathrm{NO}(\mathrm{g})$

$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]=0.0537 \mathrm{M}} \\
& {\left[\mathrm{O}_{2}\right]=0.0537 \mathrm{M}} \\
& {[\mathrm{NO}]=0.00600 \mathrm{M}}
\end{aligned}
$$

4. The equilibrium constant K is 115 at $60^{\circ} \mathrm{C}$ for the reaction shown below. A 1.500 L flask contains 3.000 mole of each substance.

$$
\mathbf{F}_{2(\mathrm{~g})}+\mathbf{H}_{2(\mathrm{~g})} \quad \leftrightarrows \quad \mathbf{2} \mathbf{H F}_{(\mathrm{g})}
$$

A. Is the system at equilibrium? (Show work here)
B. If not, in which direction will the equilibrium shift?
C. What are the equilibrium concentrations for each substance?
$\left[\mathrm{H}_{2}\right]=0.472 \mathrm{M}$
$\left[F_{2}\right]=0.472 \mathrm{M}$
$[\mathrm{HF}]=5.056 \mathrm{M}$
5. The value of K for the HI equilibrium at $425^{\circ} \mathrm{C}$ is 54.8 .

$$
\mathbf{H}_{(\mathrm{g})}+\mathbf{I}_{2(\mathrm{~g})} \leftrightarrows 2 \mathbf{H I}_{(\mathrm{g})}
$$

A quantity of $\mathrm{HI}_{(\mathrm{g})}$ is placed in a 1.00 L container and allowed to come to equilibrium at $425^{\circ} \mathrm{C}$. At equilibrium, the concentration of $\mathrm{HI}_{(\mathrm{g})}$ is found to be 0.50 M .
(a) What are the concentrations of $\mathrm{H}_{2(\mathrm{~g})}$ and $\mathrm{I}_{2(\mathrm{~g})}$ at equilibrium?
(b) What was the initial concentration of $\mathrm{HI}_{(\mathrm{g})}$?

$$
\mathbf{H}_{2(\mathrm{~g})} \quad+\quad \mathbf{I}_{2(\mathrm{~g})} \quad \leftrightarrows \quad \mathbf{2 H I}(\mathrm{g})
$$

6. Consider the system $\quad \mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \leftrightarrows \mathrm{AB}(\mathrm{g}) \quad$ at equilibrium where $\mathrm{K}_{\mathrm{c}}=500$.

At equilibrium, the concentrations of A, B, and AB are found to be $0.0300 \mathrm{M}, 0.0100 \mathrm{M}$, and 0.150 M , respectively, in a 5.00 L container. An additional 0.0400 moles of B are added. What are the final equilibrium concentrations of A, B, and AB ?

$$
\mathrm{A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \quad \leftrightarrows \quad \mathrm{AB}(\mathrm{~g})
$$

$[\mathrm{A}]=0.0246 \mathrm{M}$
$[B]=0.0126 \mathrm{M}$
$[\mathrm{AB}]=0.1554 \mathrm{M}$
7. A 2.50 -mole quantity of NOCl was initially in a $1.50-\mathrm{L}$ reaction chamber at $400^{\circ} \mathrm{C}$ where the following chemical reaction occurred.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

After equilibrium was established, it was found that 28.0% of the NOCl had decomposed. Calculate the equilibrium constant K_{c} for this reaction.

$$
K=0.0353
$$

