Mr.	Bracken
AP	Chemistry

Name_			
Period			

Introductory Ksp Worksheet #0.5 (2010)

1. Complete the following chart.

Compound	Solubility Equilibrium Reaction	Ksp Expression
NaCl		Ksp =
CaSO ₄		Ksp =
SrF ₂		Ksp =
BaCO ₃		Ksp =

2. We can think of Ksp as an indication of a "solubility limit" for each compound.

 $\frac{Would\ a\ precipitate\ be\ observed\ if\ the\ following\ were\ mixed?}{120\ mL\ of\ 0.010\ M\ CaCl_2\ \ and\ 650\ mL\ of\ 0.010\ M\ Na_2SO_4}$

3.	Would a precipitate be observed if the following were mixed?
3.	Would a precipitate be observed if the following were mixed? 75 mL of 0.010 M AgNO ₃ and 75 mL of 0.010 M NaCl
4.	Would a precipitate be observed if the following were mixed? 100 mL of 0.10 M CaCl ₂ and 50 mL of 0.10 M KF
5.	What is the maximum concentration of strontium ion (Sr^{2+}) that can be present in a $0.012~M~K_2CO_3$ solution without observing a precipitate of $SrCO_3$?
6.	What is the maximum concentration of chloride ion (Cl¹-) that can be present in a 0.10 M AgNO ₃ solution without observing a precipitate of AgCl?